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Big Picture: Simulate the Internet
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® Measure and model each component
 |dentify simple properties and patterns

® Model and simulate their interactions
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Overview of Research Directions

1. Characterize and model network behavior:
 The use of Long Range Dependence

2. Model and simulate BGP
« Large-Scale Realistic simulations (10,000 nodes)

3. Model and simulate the Internet topology
» |dentify topologies for simulations

Apply datamining techniques In network data
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Progress Summary

v' B Estimating Long Range Dependence
* There is no systematic way to estimate LRD
- Pitfalls: estimators can be deceived
 SELFYS software tool for performance analysis

v I A study of BGP policy routing robustness
* There is persistence and prevalence in BGP paths
» Routing is fairly robust, but there is a lot of “noise” too
« A data repository: 107Gb, 1 billion BGP paths

& Measuring the performance of real-time applications
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Next Steps

& A systematic approach to characterizing data:
« Can we characterize a trace with a few numbers?
« Estimating LRD and quantifying burstiness

& Effect of topology on performance
« \What causes LRD in network behavior?

& Realistic BGP simulation scenarios and models
 Simulation Models for BGP
» |Large Scale (10,000) BGP simulations

& Spatiotemporal correlations: traffic and topology
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Work Integration and Collaboration

1. Large Scale Measurements
 Nageswara Rao, ORNL

2. Performance Characterization
 Rolf Riedi, Rice U.

3. Large Scale BGP simulations
* George Riley Gtech, Dave Nichols, Dartmouth
* Anja Feldmann, Saarland U.
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Roadmap

. The hunt for Long Range Dependence
« How can | quantify LRD?

Il. BGP routing stability and policy
« How stable is BGP routing?

lll. Measurements for real-time applications
« How well does the network perform for i.e. VolP?
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Characterizing Network Behavior
with Long Range Dependence

¥ LRD captures the “memory” of the behavior
&% It is quantified by a single scalar number

® LRD appears in many aspects of networks
 Traffic load, arrival times, delays, packet loss

¥ Open Question: what does it really tell us?

PROBLEM: We do not know how to estimate LRD!

« Many estimators and no systematic approach
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The Intuition Behind LRD

¥ Capturing the “dependency” of the current
measurement to previous values

® Brownian Noise %ﬁmﬂwwrw‘w/ww\w M WWM M\W
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ldea: Reverse Engineering LRD

% Develop a library of behaviors of known data
® Three series of tests for the estimators

1. Evaluating the accuracy of the estimators
Synthetic Fractional Gaussian Noise (FGN)

2. Deceiving the estimators with non-LRD data
— Periodicity, Noise, Trend

3. Applying the estimators on real data
Characterizing delay and packet loss
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1. Accuracy: Synthetic LRD Data
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Large difference in
values!

The Whittle and
Periodogram are
most accurate

The rest can be
significantly
inaccurate!

RIVERSIDE NMS 2002 M. Faloutsos and C. Faloutsos 11



2. Robustness: Decelving the
Estimators

¥ Periodicity fools many estimators

* The Whittle, the Periodogram, the R/S and the Abry-
Veitch falsely report LRD in series constructed by
cosine functions and noise.

¥ Noise affects the accuracy of estimation

% Trend (Non-Stationarity) also
« Whittle and Periodogram falsely report LRD
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3. Analyzing Real Data

® Measured round trip
time

¥ Initial signal does not
exhibit LRD

& What do we do next?
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The Measured Data Is Periodic

*There is periodicity throughout the dataset

Short-Time Fourier Transform Frequency Spectrum
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Periodicity Hides the LRD!
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Practical Lessons

® LRD estimation and method must be reported
#® LRD may exist even if all estimators do not agree

® There is no “consistent-winner” estimator
* We need to consult many of them
» Drawing a conclusion is not obvious

& Estimation can be thrown off by
* Noise, trend and periodicity
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Towards a Systematic Approach

¥ Decompose signhal and characterize each
component separately

¥ Use all estimators
#® Try reverse engineering
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The SELFYS Tool

¥ Given a trace
* Cleans data
» Wavelet and Fourier analysis
* Runs all LRD estimators
* Plots results

W SELFYS an open software reference point:
« Java
» Modular

* Free
http://www.cs.ucr.edu/~michalis/PROJECTS/NMS/NMS.html
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Roadmap

The hunt for Long Range Dependence
« How can | calculate LRD?

BGP routing stability and policy
« How stable is BGP routing?

. Measurements for real-time applications
« How well does the network perform for VolP?
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BGP Routing/Policy Analysis

¥ Overarching Goal:

» Develop a realistic detailed model for large scale
realistic simulations

#® Now: A study of BGP routing robustness
» Persistence and prevalence of paths
« Stability of advertisements

® Next step:

» Study the customer-provider relationships
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Using Massive BGP Routing Data

¥ We use data from NLANR for almost 3 years
« Late 1997 to early 2001

& Daily snapshots of BGP routing tables

¥ Created a database to facilitate path queries
* 107Gb of data, 1 billion BGP paths
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Overview of Results for BGP Routing

Stable and persistent routing with some “noise”
#® 44% prefixes are advertised for < 30 days
% 50% prefixes have a dominant path 84% of time

®35% of prefixes use one path continuously for
90% of their time!

#& Significant path multiplicity due to traffic engin.
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Roadmap

The hunt for Long Range Dependence
« How can | calculate LRD?

BGP routing stability and policy
« How stable is BGP routing?

. Measurements for real-time applications
« How well does the network perform for VolP?
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Measurements: The Death of the
Symmetry Assumption

Fig. 1. CMU dataset with 40-msec sending rate and 320-byte
packet size.

# One-way delay:
Forward can be 10 times higher than backward delay
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Overview of Contributions

& Estimating Long Range Dependence
* There is no systematic way to estimate LRD
 Pitfalls: estimators can be deceived
 SELFYS software tool for performance analysis

& A study of BGP policy routing robustness
* There is persistence and prevalence in BGP paths
» Routing is fairly robust, but there is a lot of “noise” too
« A data repository: 107Gb, 1 billion BGP paths

& Measuring the performance of real-time applications

http://www.cs.ucr.edu/~michalis/PROJECTS/NMS/NMS.html
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